A simple hierarchical infinite HMM with efficient inference
نویسندگان
چکیده
We propose a simple hierarchical infinite HMM (iHMM) model, an extension to (iHMM) with efficient inference scheme. The model can capture dynamics of a sequence in two timescales and does not suffer from the problems of other related models in terms of implementation and time complexity. We use the model to analyze the dynamics in two timescales of some synthetic and real physiological data. We show that the model performs reasonably well compared to a baseline on two physiological datasets.
منابع مشابه
The Segmented iHMM: A Simple, Efficient Hierarchical Infinite HMM
We propose the segmented iHMM (siHMM), a hierarchical infinite hidden Markov model (iHMM) that supports a simple, efficient inference scheme. The siHMM is well suited to segmentation problems, where the goal is to identify points at which a time series transitions from one relatively stable regime to a new regime. Conventional iHMMs often struggle with such problems, since they have no mechanis...
متن کاملStochastic Variational Inference for the HDP-HMM
We derive a variational inference algorithm for the HDP-HMM based on the two-level stick breaking construction. This construction has previously been applied to the hierarchical Dirichlet processes (HDP) for mixed membership models, allowing for efficient handling of the coupled weight parameters. However, the same algorithm is not directly applicable to HDP-based infinite hidden Markov models ...
متن کاملA reversible infinite HMM using normalised random measures
We present a nonparametric prior over reversible Markov chains. We use completely random measures, specifically gamma processes, to construct a countably infinite graph with weighted edges. By enforcing symmetry to make the edges undirected we define a prior over random walks on graphs that results in a reversible Markov chain. The resulting prior over infinite transition matrices is closely re...
متن کاملMultiaspect target detection via the infinite hidden Markov model.
A new multiaspect target detection method is presented based on the infinite hidden Markov model (iHMM). The scattering of waves from a target is modeled as an iHMM with the number of underlying states treated as infinite, from which a full posterior distribution on the number of states associated with the targets is inferred and the target-dependent states are learned collectively. A set of Di...
متن کاملA Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.
BACKGROUND Rodent hippocampal population codes represent important spatial information about the environment during navigation. Computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. NEW METHOD We extend our previous work and propose a novel Bayesian nonparametric approach to infer rat hippocam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015